Shader "UltraCombos/Skybox/AtmosphereSkybox" { Properties { _Exposure("Exposure", Range(0,10)) = 1 } SubShader { Tags{ "Queue" = "Background" "RenderType" = "Background" "PreviewType" = "Skybox" } Cull Off ZWrite Off Pass { CGPROGRAM #pragma vertex vert #pragma fragment frag #include "UnityCG.cginc" struct v2f { float4 vertex : SV_POSITION; float3 rayDir : TEXCOORD0; }; v2f vert (appdata_base v) { v2f o; UNITY_SETUP_INSTANCE_ID(v); UNITY_INITIALIZE_VERTEX_OUTPUT_STEREO(o); o.vertex = UnityObjectToClipPos(v.vertex); float3 eyeRay = normalize(mul((float3x3)unity_ObjectToWorld, v.vertex.xyz)); o.rayDir = eyeRay; return o; } float2 rsi(float3 r0, float3 rd, float sr) { // ray-sphere intersection that assumes // the sphere is centered at the origin. // No intersection when result.x > result.y float a = dot(rd, rd); float b = 2.0 * dot(rd, r0); float c = dot(r0, r0) - (sr * sr); float d = (b*b) - 4.0*a*c; if (d < 0.0) return float2(1e5, -1e5); return float2( (-b - sqrt(d)) / (2.0*a), (-b + sqrt(d)) / (2.0*a) ); } float3 atmosphere(float3 r, float3 r0, float3 pSun, float iSun, float rPlanet, float rAtmos, float3 kRlh, float kMie, float shRlh, float shMie, float g) { const int iSteps = 16; const int jSteps = 8; // Normalize the sun and view directions. pSun = normalize(pSun); r = normalize(r); // Calculate the step size of the primary ray. float2 p = rsi(r0, r, rAtmos); if (p.x > p.y) return float3(0, 0, 0); p.y = min(p.y, rsi(r0, r, rPlanet).x); float iStepSize = (p.y - p.x) / float(iSteps); // Initialize the primary ray time. float iTime = 0.0; // Initialize accumulators for Rayleigh and Mie scattering. float3 totalRlh = float3(0, 0, 0); float3 totalMie = float3(0, 0, 0); // Initialize optical depth accumulators for the primary ray. float iOdRlh = 0.0; float iOdMie = 0.0; // Calculate the Rayleigh and Mie phases. float mu = dot(r, pSun); float mumu = mu * mu; float gg = g * g; float pRlh = 3.0 / (16.0 * UNITY_PI) * (1.0 + mumu); float pMie = 3.0 / (8.0 * UNITY_PI) * ((1.0 - gg) * (mumu + 1.0)) / (pow(1.0 + gg - 2.0 * mu * g, 1.5) * (2.0 + gg)); // Sample the primary ray. for (int i = 0; i < iSteps; i++) { // Calculate the primary ray sample position. float3 iPos = r0 + r * (iTime + iStepSize * 0.5); // Calculate the height of the sample. float iHeight = length(iPos) - rPlanet; // Calculate the optical depth of the Rayleigh and Mie scattering for this step. float odStepRlh = exp(-iHeight / shRlh) * iStepSize; float odStepMie = exp(-iHeight / shMie) * iStepSize; // Accumulate optical depth. iOdRlh += odStepRlh; iOdMie += odStepMie; // Calculate the step size of the secondary ray. float jStepSize = rsi(iPos, pSun, rAtmos).y / float(jSteps); // Initialize the secondary ray time. float jTime = 0.0; // Initialize optical depth accumulators for the secondary ray. float jOdRlh = 0.0; float jOdMie = 0.0; // Sample the secondary ray. for (int j = 0; j < jSteps; j++) { // Calculate the secondary ray sample position. float3 jPos = iPos + pSun * (jTime + jStepSize * 0.5); // Calculate the height of the sample. float jHeight = length(jPos) - rPlanet; // Accumulate the optical depth. jOdRlh += exp(-jHeight / shRlh) * jStepSize; jOdMie += exp(-jHeight / shMie) * jStepSize; // Increment the secondary ray time. jTime += jStepSize; } // Calculate attenuation. float3 attn = exp(-(kMie * (iOdMie + jOdMie) + kRlh * (iOdRlh + jOdRlh))); // Accumulate scattering. totalRlh += odStepRlh * attn; totalMie += odStepMie * attn; // Increment the primary ray time. iTime += iStepSize; } // Calculate and return the final color. return iSun * (pRlh * kRlh * totalRlh + pMie * kMie * totalMie); } half _Exposure; fixed4 frag (v2f i) : SV_Target { half3 color = atmosphere( normalize(i.rayDir), // normalized ray direction float3(0,6372e3,0), // ray origin _WorldSpaceLightPos0.xyz, // position of the sun 22.0, // intensity of the sun 6371e3, // radius of the planet in meters 6471e3, // radius of the atmosphere in meters float3(5.5e-6, 13.0e-6, 22.4e-6), // Rayleigh scattering coefficient 21e-6, // Mie scattering coefficient 8e3, // Rayleigh scale height 1.2e3, // Mie scale height 0.758 // Mie preferred scattering direction ); #if !defined(UNITY_COLORSPACE_GAMMA) color.rgb = GammaToLinearSpace(color.rgb); #endif color = 1.0 - exp(-1.0 * color * _Exposure); return half4(color, 1.0); } ENDCG } } }