diff --git a/.gitignore b/.gitignore index a8f7742..74a8187 100644 --- a/.gitignore +++ b/.gitignore @@ -2,3 +2,4 @@ engines /__pycache__ /utils/__pycache__ +/models diff --git a/img2img.py b/img2img.py index f850fe0..229bcf6 100644 --- a/img2img.py +++ b/img2img.py @@ -106,8 +106,8 @@ class Pipeline: ) def predict(self, image: Image.Image, params: "Pipeline.InputParams") -> Image.Image: - # image_tensor = self.stream.preprocess_image(image) + image_tensor = self.stream.preprocess_image(image) # output_image = self.stream(image=image_tensor, prompt=params.prompt) - output_image = self.stream(image=image, prompt=params.prompt) + output_image = self.stream(image=image_tensor, prompt=params.prompt) return output_image \ No newline at end of file diff --git a/main.py b/main.py index 2db4b63..fb7e7fc 100644 --- a/main.py +++ b/main.py @@ -5,15 +5,15 @@ import torch from PIL import Image import numpy as np import SpoutGL -from OpenGL.GL import GL_RGBA +from OpenGL.GL import GL_RGBA, GL_BGRA import time import img2img from multiprocessing import Queue def main(): TARGET_FPS = 60 - SPOUT_RECEIVER_NAME = "Spout DX11 Sender" - SPOUT_SENDER_NAME = "Output - StreamDiffusion" + SPOUT_RECEIVER_NAME = "NoiseSender" + SPOUT_SENDER_NAME = "StreamDiffusionSender" WIDTH = 512 HEIGHT = 512 PROMPT = "a beautiful landscape painting, trending on artstation, 8k, hyperrealistic" @@ -82,7 +82,7 @@ def main(): continue image_rgb_array = image_bgra[:, :, [2,1,0]] - # image_rgb_array = image_rgb_array.astype(np.float32) / 255.0 + image_rgb_array = (image_rgb_array+ 1.0 )/2.0 input_image = Image.fromarray(image_rgb_array, 'RGB') # input_image.save("debug_input.png") @@ -100,7 +100,9 @@ def main(): # output_rgba_array = np.array(output_image.convert("RGBA")) # output_bgra_array = output_rgba_array[:, :, [2, 1, 0, 3]] # buffer = np.ascontiguousarray(output_bgra_array) - output_bgr_array = np.array(output_image, dtype=np.uint8)[:, :, ::-1] + # output_bgr_array = np.array(output_image, dtype=np.uint8)[:, :, ::-1] + output_bgr_array=np.array(output_image) + output_bgra_array = np.zeros((HEIGHT, WIDTH, 4), dtype=np.uint8) output_bgra_array[:, :, :3] = output_bgr_array output_bgra_array[:, :, 3] = 255